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Abstract 
The first order phase transition of CsFeO2 was investigated using synchrotron powder diffraction 
data as a function of temperature. Two alternative approaches were used to describe the deviation of 
the framework crystal structure relative to the high-symmetry parent structure: symmetry (a.k.a. 
distortion) modes and polyhedral-tilt parameters.  In both cases, the relevant parameters were 
refined as a function of temperature using the method of parametric Rietveld refinement.  We 
demonstrate a semi-automated and generally applicable method for the determination of 
spontaneous lattice strain variations, order parameters and power-law exponents as derived from 
Landau theory.  
 

Introduction 

Many crystalline phases can be viewed as low-symmetry distortions of real or hypothetical higher-
symmetry parent structures (i.e. aristotypes).  In such cases, a group-subgroup relationship must 
exist between the two structures, so that all symmetry elements of the low-symmetry phase are also 
present in the high symmetry phase.  The low-symmetry phase will generally have more structural 
degrees of freedom than the parent phase, and may involve some combination of magnetic, 
displacive, occupancy and strain degrees of freedom.  Using group-representation theory, these 
degrees of freedom can always be parameterized in terms of basis functions of the irreducible 
representations (irreps) of the parent symmetry, which we refer to as symmetry-adapted distortion 
modes, or more simply as symmetry-modes.  The symmetry modes of a given type (e.g. lattice 
strain, displacive, occupancy or magnetic) belonging to the same irrep collectively comprise an 
“order parameter”.  The key order parameters that define a structural transition have zero amplitude 
on the high-symmetry side, and take on non-zero amplitudes on the low-symmetry side.  These 
order parameters tend to place the daughter atoms of a given parent atom onto more general 
Wyckoff sites and often split a parent atom across multiple unique daughter sites.  In many cases, 
the symmetry-adapted description is the most natural parameter set, because nature's order 
parameters are usually selected to break a specific set of symmetries. 
 
In case of framework crystal structures, whose structural distortions involve rigid polyhedral units, 
the most natural description comprise tilt modes that leave the polyhedra undistorted [1, 2]. To 
account for this additional chemical information, one uses rotations, translations, and torsions as 
adjustable parameters.  If the voids of the framework are occupied by guest atoms or molecules, 
these entities may also translate and/or reorient.  The rigid-body (RB) description is more restrictive 
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than the symmetry-mode (SM) basis, which is helpful when only RB behavior is observed.  But a 
single symmetry-adapted order parameter will often approximate a rigid-body mode for small mode 
amplitudes; and a linear combination of symmetry modes can achieve any possible distortion, 
including RB distortions. 
 
If the distorted structure has a lower point group symmetry than the parent structure, the distortion 
can be referred to as ferroic.  A ferroic distortion can be further classified as ferroelastic if it 
changes the shape of the unit cell in such a way as to alter the crystal system.  A ferroelastic 
distortion can be described in terms of spontaneous macroscopic strains (εs) of the parent unit cell 
parameters.  The ferroelastic transition then marks the boundary between the low-symmetry 
ferroelastic phase and a higher-symmetry paraelastic phase that supports only disordered local 
strains.  Landau theory describes the main physical features of most ferroelastic phase transitions, 
wherein the thermodynamic state of the system and the free-energy difference that stabilizes the 
low-symmetry phase (the excess Gibbs free energy) are expressed in terms of thermodynamic order 
parameters [3,4].  Here, we will treat the lattice strains as linear combinations of symmetry-adapted 
gamma-point order parameters, which may also be coupled to additional displacive order 
parameters. 
 
In Landau theory, an order parameter decreases continuously to zero at a second-order (a.k.a. 
continuous) phase transition, whereas an order parameter can abruptly "jump" to a non-zero value at 
a first-order (a.k.a. hysteretic) transition.  For a continuous transition, the order parameter's 
dependence on temperature can be modeled by an empirical power law of the form 
 

Q = f |Tcrit – T|β,         (1) 
 

where Tcrit is the transition temperature, β is the critical exponent, and f is a temperature coefficient.  
Typical values of β are ½ for ordinary scalar second-order transitions, or ¼ for a transition at the 
tricritical point that marks the boundary between first and second-order transitions.  Values between 
¼ and ½ might be obtained for a variety of reasons [5,6].  The Landau critical exponent is derived 
by calculating the first derivative of the power series expansion of a truncated Gibbs free energy 
with respect to the order parameter and setting it to zero, a simplistic approach that is really only 
valid in a small temperature interval around Tcrit.  However, it has also been shown that non-
standard power-law exponents obtained from fits over extended temperature ranges are often due to 
temperature-dependent energy-expansion coefficients of order four or higher and have nothing at all 
to do with critical phenomena [7,8].  And finally, attempting to fit a power-law to an order 
parameter that is only approximately second order, will artificially suppress the exponent due to the 
unusually rapid descent near the transition. 
 
The most common method of characterizing structural phase transitions is powder x-ray or neutron 
diffraction. Modern lab instruments and advanced scattering facilities now provide for the rapid 
collection of high resolution powder diffraction patterns as a function of parameters like 
temperature, pressure or simple time.  1D or 2D position sensitive detectors allow for efficient 
measurements of a series of powder pattern near a phase transition.  Usually, powder diffraction 
patterns are refined individually, followed by a post-refinement analysis of lattice parameters or 
atomic coordinates as a function of external variables.  But with the availability of flexible self-
programmable Rietveld programs like TOPAS, the simultaneous refinement of a single parametric 
model against multiple datasets has now become possible [9].  User-friendly software packages that 
allow one to automatically reparameterize a low-symmetry structure in terms of symmetry-adapted 
order parameters of a higher symmetry structure have also become available (e.g. ISODISPLACE 
[10, 11] and AMPLIMODES [12]), and require only a very basic knowledge of group theory.  
Together, these developments have enabled fast and stable parametric refinements of physically-
meaningful order parameters that were previously impractical. 
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In this paper, the ferroelastic phase transition of CsFeO2 is investigated in detail via parametric 
Rietveld refinement as a function of temperature. Both displacive and strain order parameters are 
modeled using power-law trends below Tcrit.  The displacive order parameters are analyzed using 
both the RB and SM descriptions for comparison purposes. 
 
Method 

Both RB and SM distortion models have been used to study the ferroelastic phase transition of 
CsFeO2 from a cubic (space group mFd 3 ) parent structure to an orthorhombic (space group Pbca) 
low-symmetry structure (Fig. 2).  We describe the SM approach first.  Starting with mFd 3  and 
Pbcn CIF-structure files that were derived from single-crystal x-ray diffraction data from isotypic 
RbFeO2 [13], the ISODISPLACE software was used to perform an automatic symmetry-mode 
decomposition of the low-symmetry distorted structure into modes of the high-symmetry cubic 
parent.  In the cubic phase, despite having a total of 32 atoms in the conventional face-centered unit 
cell, the structure of CsFeO2 has no free atomic coordinates.  The cubic cell contains one unique 
atom of each type, each of which lies on a special Wyckoff point.  In the orthorhombic phase, 
however, there are 24 free atomic coordinates.  Because the symmetry-mode basis is related to the 
traditional atomic-coordinate basis by a linear transformation, there must also be 24 displacive 
symmetry modes, which are listed in Table 1. 
 
Each mode in Table 1 has rather long name that includes the parent space-group symmetry to which 
the mode belongs, the k-point (i.e. the point in reciprocal space that will get intensity if the mode is 
activated), the space-group irrep label and order parameter direction (dictates which space-group 
symmetry operations are preserved by the mode), the parent atom affected by the mode and its 
Wyckoff site, the irrep of the point-group symmetry (dictates which site symmetry operations are 
preserved by the mode) and the order parameter branch [10].  For convenience, we number these 
modes from 1 to 24.  Note that we use Miller-Love notation for all irrep labels.  Eq. 2 shows how 
the atomic positions rj of the low-symmetry (LS) and high-symmetry (HS) phases are related [1].  
 

( )∑+=
m

mmj
HS
j

LS
j mjQc εrr ,         (2) 

 
The j index indicates an atom in the low-symmetry supercell, the m index runs over all of the modes 
associated with its parent atom, ( )mjε  is the jth component of the unnormalized  polarization vector 

of the mth mode, and the mjc ,  are normalization coefficients such that ( )∑ =
j mj mjc 1

22
, ε .  mQ  is the 

amplitude of the mth mode, and equals the root-summed-squared displacement, summed over all 
supercell atoms affected by the mode.  ISODISPLACE essentially used group-theoretical methods 
to compute the symmetry-mode polarization vectors and normalization coefficients, and then saved 
the results as a system of linear equations in TOPAS .str format [11]. 
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Table 1: Symmetry-adapted distortion modes available to the ferroelastic phase transition of 
CsFeO2 from Fd-3m to Pbca symmetry.  The ten modes that were actually used for parametric 
Rietveld refinements appear in bold. 
 name description of mode 
1 a1 Fd-3m[0,0,0]GM5+(a,0,0)[cs:b]T2 
2 a2 Fd-3m[0,3/2,0]DT5(0,0,0,0,0,0,0,0,a,-2.414a,2.414a,a)[cs:b]T2_1(a) 
3 a3 Fd-3m[0,3/2,0]DT5(0,0,0,0,0,0,0,0,a,-2.414a,2.414a,a)[cs:b]T2_2(a) 
4 a4 Fd-3m[1/2,1/2,0]SM2(0,a,0,0,0,0,0,0,0,0,0,0)[cs:b]T2(a) 
5 a5 Fd-3m[1/2,1/2,1/2]L3+(0,0,0,0,a,-a,-a,a)[cs:b]T2(a) 
6 a6 Fd-3m[0,1,0]X1(0,a,0,0,0,0)[cs:b]T2(a) 
7 a7 Fd-3m[0,0,0]GM5+(a,0,0)[Fe:a]T2(a) 
8 a8 Fd-3m[0,3/2,0]DT5(0,0,0,0,0,0,0,0,a,-2.414a,2.414a,a)[Fe:a]T2_1(a) 
9 a9 Fd-3m[0,3/2,0]DT5(0,0,0,0,0,0,0,0,a,-2.414a,2.414a,a)[Fe:a]T2_2(a) 
10 a10 Fd-3m[1/2,1/2,0]SM2(0,a,0,0,0,0,0,0,0,0,0,0)[Fe:a]T2(a) 
11 a11 Fd-3m[1/2,1/2,1/2]L3+(0,0,0,0,a,-a,-a,a)[Fe:a]T2(a) 
12 a12 Fd-3m[0,1,0]X1(0,a,0,0,0,0)[Fe:a]T2(a) 
13 a13 Fd-3m[0,3/2,0]DT5(0,0,0,0,0,0,0,0,a,-2.414a,2.414a,a)[O:c]A2u(a) 
14 a14 Fd-3m[0,3/2,0]DT5(0,0,0,0,0,0,0,0,a,-2.414a,2.414a,a)[O:c]Eu_1(a) 
15 a15 Fd-3m[0,3/2,0]DT5(0,0,0,0,0,0,0,0,a,-2.414a,2.414a,a)[O:c]Eu_2(a) 
16 a16 Fd-3m[1/2,1/2,0]SM2(0,a,0,0,0,0,0,0,0,0,0,0)[O:c]A2u(a) 
17 a17 Fd-3m[1/2,1/2,0]SM2(0,a,0,0,0,0,0,0,0,0,0,0)[O:c]Eu_1(a) 
18 a18 Fd-3m[1/2,1/2,0]SM2(0,a,0,0,0,0,0,0,0,0,0,0)[O:c]Eu_2(a) 
19 a19 Fd-3m[1/2,1/2,1/2]L2+(0,0,a,-a)[O:c]Eu(a) 
20 a20 Fd-3m[1/2,1/2,1/2]L3+(0,0,0,0,a,-a,-a,a)[O:c]A2u(a) 
21 a21 Fd-3m[1/2,1/2,1/2]L3+(0,0,0,0,a,-a,-a,a)[O:c]Eu_1(a) 
22 a22 Fd-3m[1/2,1/2,1/2]L3+(0,0,0,0,a,-a,-a,a)[O:c]Eu_2(a) 
23 a23 Fd-3m[0,1,0]X1(0,a,0,0,0,0)[O:c]A2u(a) 
24 a24 Fd-3m[0,1,0]X1(0,a,0,0,0,0)[O:c]Eu(a) 
 
 

 
Fig. 2: An a-axis projection of the low-temperature (Pbca) crystal structure of CsFeO2. 
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Ten of the 24 displacive symmetry modes were identified as being necessary to describe the phase 
transition: two (a2 and a4) for caesium, two (a9 and a10) for iron and six (a14, a15, a16, a17, a18 
and a19) for oxygen.  The a2-mode affects the y-coordinates of both Cs atoms, while a4 only 
affects the x-coordinate of Cs2. The a10 mode influences the y-coordinate of the Fe1 and Fe2 atoms 
while the a10 mode influences only the x-coordinate of the Fe1 atom.  Oxygen modes a14 to a19 
cooperate to describe the rotation of the FeO4 tetrahedron, which should not be substantially 
distorted. The involved modes were classified considering different properties: modes with small 
amplitudes were assumed to be not important as they cause only minimal changes of atomic 
positions. ISODISPLACE [10] was used to control the shift of the atoms. To assure that no 
important mode was neglected, it was checked that additional modes do not lead to a better fit. 
 
Next, we describe implementation of the rigid-body model, in which the low-symmetry distortion 
was defined in terms of polyhedral tilt angles [2] that left the polyhedra themselves undistorted. A 
suitable rigid building unit that describes both the low and high-temperature CsFeO2 structures 
consists of two regular corner-sharing FeO4 tetrahedra that are tilted with respect to each other as 
shown in Fig. 3. Taking symmetry equivalent positions into account, the resulting rigid body 
consists of four oxygen and two iron atoms with two tilting angles and the average Fe-O distance as 
internal degrees of freedom, as illustrated in Fig. 4.  The two tilt angles are (1) the Fe1-O1-Fe2 (tilt-
1) bond angle and (2) the O4-Fe2-O1-Fe1 tortion angle (tilt-2) between the two tetrahedra.  For the 
Rietveld refinement, the rigid body was set up in form of a z-matrix (Table 2) that naturally 
describes the position of each atom in terms of its distance, angle and torsion angle relative to 
previously defined atoms [14]. The bridging O1 oxygen atom of the two tetrahedra was used as the 
centre of the rigid body. The orientation and position of the rigid body relative to the internal 
coordinate system of the crystal was found to be constant over the entire temperature range of 
investigation and thus only the three internal degrees of freedom were subjected to refinement.  As 
the two Cs atoms in the voids of the framework are independent of the rigid body, their 
crystallographically relevant atomic coordinates were refined separately. 
 
Table 2: Z-matrix description [14] of the crystallographically independent atoms of the Fe2O7 rigid 
body in Pbca symmetry. The three internal refinable parameters (tilt-1, tilt-2 and r) are displayed in 
bold. 
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Fig. 3: Rigid body consisting of the crystallographically independent atoms of the structure building 
double tetrahedron in CsFeO2 exhibiting three internal parameters: r, tilt-1 and tilt-2. 
 
The technique of parametric Rietveld refinement [9] was applied to both the SM and RB models. 
This technique enables the refinement of various (e.g. thermodynamic) parameters directly from 
diffraction data.  Prior to parametric refinement, preliminary refinements were performed at each 
temperature individually, and the temperature dependence of each candidate symmetry mode or z-
matrix parameter was examined in order to identify the parameter subset that captures the principal 
features of the distortion.  Then, for the parametric refinement, these crystallographic structural 
parameters were not refined directly, but were rather modeled as power-law temperature trends (Eq. 
1), so that each one possessed a temperature-independent power-law exponent and coefficient [3].  
Each z-matrix parameter in the RB model possessed an unique refinable coefficient and exponent.  
In the SM model, however, all modes belonging to a single order parameter (labeled according to 
irrep) shared the same power-law exponent.  The temperature-independent power law exponents 
and coefficients were then subjected to parametric refinement, simultaneously against diffraction 
patterns collected at all temperatures.  Topas (Version 4.1; Bruker AXS) was used to perform the 
refinements [15]. 
 
The characterization of the lattice strain below the ferroelastic phase transition is also important 
here.  Strain is a symmetric second rank tensor that can be represented by a 3×3 matrix which for 
the orthorhombic symmetry (actual supercell) reduces to a diagonal matrix with the following 
diagonal elements: 
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with the lattice parameters of the supercell as, bs., cs and the isothermal lattice parameters as0, bs0 
and cs0.  The isothermal lattice parameters as0, bs0 and cs0 can be also calculated from the isothermal 
lattice parameter of the cubic parent cell ap0. 
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A more convenient way to set up these equations can be done in dependence on the cubic parent 
cell.  In the high-symmetry cubic phase, the strain is a diagonal matrix such that 
 

0and 132312332211 ===== pppppp eeeeee .      (4) 
 
Upon formation of the ferroelastic strain, the parent cell becomes a pseudo-cubic monoclinic cell 
defined by three independent order parameters that we will denote by Γε , where Γ indicates one of 

three strain mode irreps: +Γ1 , +Γ3  and +Γ5 .  The +Γ1  mode produces an isotropic volume expansion.  

The +Γ3  mode effects a tetragonal expansion of the parent ab plane and a compensating contraction 

of the c axis.  The +Γ5  mode results in a monoclinic shear that changes the parent gamma angle and 
gives rise to a non-zero e12 strain component.  In the coordinate system of the parent cell, the 
relationships between the lattice strains, the strain order parameters, the pseudo-cubic cell 
parameters (ap, bp, cp, γp) and the unstrained cubic cell parameter, a0, can be summed up as 
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The relationship between the strain of the supercell and the cubic strain is given in the following 
equation:  
 

11 11 12

22 11 12

33 33
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e e
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= −

=

          (6) 

 
In the present parametric refinements, the supercell strain parameters were modeled as power-law 
trends vs. temperature.  They are viewed as independent coupled order parameters and each 
possesses their own power-law exponents and coefficients (Eq. 7).  In the parametric refinement, a 
conditional statement defined the region below the transition where the order parameters were 
permitted to have non-zero values. 
 

0 else,)()( then )(T If =−=< ΓΓΓ
Γ εε βTTfTT critcrit  .     (7) 

 
During parametric refinement the exponents and coefficients of the strain (Eq. 3) were used to 
calculate the supercell lattice parameters at each temperature.   
 
It was necessary to treat the cubic parent cell parameter as a temperature-dependent quantity, a0(T), 
and to linearly extrapolate it into the region of the low symmetry phase in order to correct for the 
additional effects of thermal expansion [16].  The slope (m0) and intercept (t0) used for this 
extrapolation were also part of the parametric refinement.   
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Experiment 

Material 
The sample was prepared using the azide/nitrate route [17, 18] from CsNO3 (Sigma Aldrich, 99%), 
cesium azide (CsN3) and active iron oxide (Fe2O3) according to the following equation:  
 

5 CsN3 + CsNO3 -> 6 CsFeO2 + 8 N2        (8) 
 

The starting materials were mixed in the ratio required according to Eq. 19, ground thoroughly in an 
agate mortar, pressed into pellets (Ø = 6 mm) under 105 N, dried in vacuum (10–3 mbar) at 400 K 
for 12 h and placed under argon into a tightly closed steel vessel, provided with a silver inlay. In a 
flow of dry argon, the following temperature profile was applied for CsFeO2: 298-533 K (100 Kh–

1); 533-653 K (5 K h–1); 653-833 K (20 K h-1). The reaction product was later cooled down slowly 
to 673 K (5 K h–1) and then to room temperature at a rate of 100 K h–1. The powder obtained is very 
sensitive to humid air and must be handled in an inert atmosphere.  
 
Measurement 
Powder diffraction measurements were performed at the Materials Sciences (MS-Powder) beamline 
of the Swiss Light Source using synchrotron radiation of wavelength 0.49701 Å using the 
Microstrip Detector Mythen-II. The sample was sealed in a Hilgenberg quartz-glass capillary with a 
diameter of 0.3 mm. The diffraction patterns were collected on heating the powder sample from 
303-409 K with steps of 1 K using a STOE capillary furnace. The powder patterns were recorded 
for 40 seconds (4 scans of 10 seconds each) in the angular range from 3.0° – 53.38° 2θ. 
 
Results and Discussion 

The dependence of the crystal structure of CsFeO2 on temperature in the temperature range from 
303 K to 409 K was investigated by sequential and parametric Rietveld refinement.  Both symmetry 
mode (SM) and rigid-body (RB) refinements were performed.  Fig. 4 illustrates the result of a 
single-temperature refinement based on SM parameters at T = 328 K.  Fig. 5 illustrates the results 
from a temperature-dependent parametric symmetry-mode refinement against all available data sets 
throughout the temperature range investigated.  The parametric model produced diffraction patterns 
that agreed well with corresponding experimental patterns at each temperature, demonstrating the 
effectiveness of the parametric approach and the inclusion of an adequate structural-parameter set.  
Including additional parameters did not significantly improve the quality of the fit. 
 

 
Fig. 4: Logarithmic plot of the single-point symmetry-mode refinement of CsFeO2 at T = 328 K. 
The two peaks at 6.79° and 24.48° 2θ are used to model the background in addition to the 
Chebyshev polynomial.  
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Fig. 5: Logarithmic plot of temperature-dependent parametric symmetry-mode refinement of 
CsFeO2 in the temperature ranges from 303 K to 409 K. Observed, calculated and difference traces 
for all temperatures used (1 K steps) are shown in a stacked arrangement. 
 

 
Fig. 6: Temperature-dependent supercell parameters for CsFeO2 as calculated from parametrically-
refined power-law models of the strain parameters.   
 
For both types of parametric Rietveld refinements (SM, RB) (Fig. 5), the lattice parameters varied 
only slightly (Fig. 6). Below the phase transition, all strain order parameters (Fig. 7) and lattice 
parameters exhibit the anticipated power law trends, while above the transition, the lattice 
parameters can be adequately fitted using a linear function within the investigated temperature 
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range. The strain order parameters exhibited essentially the same development when applied to the 
SM and RB models.  Observe that the magnitude of the strain component e11 is significantly higher 
than the magnitudes of e22 and e33, which are of comparable size.   
 

 
Fig. 7: Temperature-dependent supercell strains for CsFeO2 as calculated from their parametrically-
refined power-law models. 
 

 
Fig. 8: Comparison of the root squared sum of the DT5, SM2 and L2+ with the normalised internal 
RB parameters in dependence on temperature.  Temperature-dependent symmetry-mode amplitudes 
for CsFeO2 as determined from their parametrically-refined power-law models. 
 
The temperature-dependencies of the displacive degrees of freedom are plotted in Figure 8.  These 
power-law curves were calculated using the parametrically-refined coefficients and exponents.  The 
refined power-law coefficients and exponents are listed in Table 3.  Note that the SM and RB 
refinements were performed separately, though their results are shown together. 
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If one views the set of all possible distortions possessing the requisite supercell and Pbca symmetry 
as a multi-parameter vector space, the traditional atomic-coordinate (TAC) and SM descriptions 
both span the entire distortion space.  In contrast, the RB description is much more restrictive 
because it only allows distortions that preserve the shapes of the rigid polyhedra.  Thus the RB 
description has far fewer free parameters.  While the SM description has just as much freedom as 
the TAC description, only a relatively small fraction of the available symmetry modes tend to be 
important to a specific phase transition.  And in the case of CsFeO2, a relatively small number of 
symmetry modes can approximately reproduce the rigid-body motions observed. 
 
Ideally, we would expect all of the modes associated with a single symmetry-adapted order 
parameter to evolve together, sharing the same power-law exponent, and we have assumed this to 
be the case in defining the SM model of CsFeO2.  The key displacive order parameters that 
contribute to the low-temperature CsFeO2 distortion appear to be DT5 (∆5), SM2(Σ2) and L2+( +

2L ).  
ISODISPLACE was used to determine that any two of these could comprise a potentially primary 
(i.e. capable of producing the symmetry of the distorted phase) pair of coupled order parameters.  In 
general, coupled order parameters can arise at different temperatures and follow different trends.  
Or they can be strongly coupled, arising at nearly the same temperature and following very similar 
trends.  Because sequential single-temperature refinements indicate that each of the important order 
parameters of CsFeO2 arise within a 1 K temperature range, we assumed they all appear at the same 
temperature (352 K). 
 
Because the DT5, SM2 and L2+ order parameters must cooperate in order to preserve the shapes of 
the FeO4 tetrahedra, we can reasonably assume that they are strongly coupled by physical bonding 
constraints.  Thus, we might expect them to exhibit similar temperature evolutions.  The a15 and 
a19 symmetry modes, for example, must cooperate to mimic the RB tilt-2 angle, and therefore are 
coupled with the same power-law exponents.  Because the SM and RB models are roughly 
equivalent, it is not surprising that the DT5/L2+ power-law exponent is similar to that of the RB tilt-
2 angle itself.  Other relationships between the two models include the a10 symmetry mode, which 
approximates the RB tilt-1 angle, and the a2 and a4 symmetry modes which are related to the Cs 
positions of the RB model.   In each of these cases, the power-law exponents of geometrically-
related SM and RB parameters are very similar as expected.   
 
The small values obtained for the power-law exponents in Table 3 should not be overinterpreted.  
They are, most likely, a result of the fact that this phase transition is actually first order.  Based on 
Landau and renormalization-group theory considerations, ISODISPLACE determined that none of 
the DT5, SM2 or L2+ order parameters of the CsFeO2 distortion are capable of producing 
continuous transitions when acting alone, and certainly not when acting simultaneously.  Though 
the transition appears to be approximately second order in nature, first-order distortions that evolve 
too quickly below the transition do provide a simple explanation for the unusually-small power-law 
exponents that we observe. 
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Table 3: Comparison of effective power-law coefficients and exponents obtained from parametric 
Rietveld refinement of CsFeO2 in dependence on temperature using two different methods.  

 
Conclusions 

We have demonstrated the semiautomated parametric refinement of structural order parameters that 
arise at the cubic-orthorhombic structural phase transition of CsFeO2.  This parametric refinement 
against diffraction patterns collected over a wide range of temperatures yielded power-law 
exponents and coefficients describing the evolution of the atomic displacements and the ferroelastic 
lattice-strains that contribute to the distortion.  Two different parameterizations of the distortion, the 
symmetry-adapted distortion mode description and the internal rigid-body (i.e. z-matrix) 
description, proved to be closely related due to the natural tendency of symmetry modes to produce 
polyhedral tilts like those observed in CsFeO2. With both models, the automated parametric 
refinement greatly increased the speed of the refinement and post-refinement analysis.  To 
characterize power-law trends in structural order parameters, it was crucial to collect diffraction 
patterns at a sufficient number points above and below the phase transition, which is routinely 
possible at modern synchrotron sources.  In the case of the present work, the interpretation of the 
power-law exponents was difficult due to fact that this structural phase transition is weakly first 
order.  Yet, the parametric Rietveld refinement of symmetry modes and internal rigid body 
parameters as a function of external variables proved to be a powerful tool for investigating 
structural phase transitions.  The principle benefit lies in the flexibility and convenience of 
identifying, testing and comparing candidate order parameters.  The development of third party 
software for further automation of this rather complicated process is under way. 
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Appendix:   
 
Topas script for the parameterized distortion modes of CsFeO2 in dependence on temperature 
 
do_errors 
conserve_memory 
 
r_wp  6.826 r_exp  3.022 r_p  5.131 r_wp_dash  10.355 r_p_dash  10.644 r_exp_dash  4.584 
weighted_Durbin_Watson  44.981 gof  2.259 
 
'Temperatures 
prm !t_30 30 
prm !t_31 31 
… 
list of all different temperatures 
… 
prm !t_135 135 
prm !t_136 136 
 
'temperature at end of transition 
prm t_crit  79.04822_0.01099 
 
'parameters of parametric functions 
prm !f_a1 0 
prm f_a2  0.06639`_0.00140 
prm !f_a3  0 
prm f_a4  0.35517`_0.00137 
prm !f_a5 0 
prm !f_a6 0 
prm !f_a7 0 
prm !f_a8 0 
prm f_a9  0.14451`_0.00263 
prm f_a10  0.24105`_0.00122 
prm !f_a11 0 
prm !f_a12 0 
prm !f_a13 0 
prm f_a14  0.62236`_0.01275 
prm f_a15  0.61578`_0.01311 
prm f_a16  0.21265`_0.00394 
prm f_a17 -0.06097`_0.00471 
prm f_a18 -0.49873`_0.00456 
prm f_a19  1.52795`_0.00750 
prm !f_a20 0 
… 
prm !f_a24 0 
 
prm !c_a1 0 
prm c_a2  0.01487`_0.00137 
prm !c_a3  0 
prm c_a4  0.12326`_0.00114 
prm !c_a5 0 
prm !c_a6 0 
prm !c_a7 0 
prm !c_a8 0 
prm c_a9 =c_a2; 
prm c_a10  =c_a4; 
prm !c_a11 0 
prm !c_a12 0 
prm !c_a13 0 
prm c_a14 =c_a2; 
prm c_a15 =c_a2; 
prm c_a16 =c_a4; 
prm c_a17 =c_a4; 
prm c_a18  =c_a4; 
prm c_a19 =c_a2; 
prm !c_a20 0 
prm !c_a21 0 
prm !c_a22 0 
prm !c_a23 0 
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prm !c_a24 0 
 
prm f_e22  0.00084`_0.00000 
prm c_e22  0.05950`_0.00077 
 
prm f_e11 -0.00172`_0.00000 
prm c_e11  0.18530`_0.00035 
 
prm f_e33 -0.00034`_0.00000 
prm c_e33  0.27720`_0.00174 
 
 
prm c_lp0  8.38604`_0.00001 
prm m_lp0  0.00018`_0.00000 
 
'information about data 
macro information { 
 start_X  5 
 finish_X  62 
 LP_Factor( 90) 
 Zero_Error(, 0.00545) 
 exclude  0  0 
 Rp 217.5 
 Rs 217.5 
 Slit_Width( 0.1) 
 lam 
  ymin_on_ymax  0.0001 
  la  1 lo  0.497015 lh  1e-006 
 x_calculation_step 0.005 
} 
/*  
here for each pattern which is refined the details of the refinement are listed:  
an example is given for the pattern at 70°C.  
The contributions of other patterns only differ in the naming of parameters. 
*/  
 

… 
 
 xdd "ch_070.xye" 
 
bkg  @  391.161639`_1.1606305  361.363748`_2.12143128 -493.797701`_1.81476721  
328.032304`_1.39636055 -135.272781`_1.07147052  3.13766804`_1.01669772  
46.0996839`_0.88239319 -49.7190967`_0.870149416 
r_wp  5.530 r_exp  2.999 r_p  4.293 r_wp_dash  8.274 r_p_dash  8.651 r_exp_dash  4.486 
weighted_Durbin_Watson  0.495 gof  1.844 
information 
 
 str  
  CS_L( , 757.72414_26.62824) 
  Strain_L( , 0.09294_0.00125) 
  r_bragg  100 
  phase_name "CsFeO2_RT" 
  cell_mass  3532.004 
  cell_volume  1182.06002`_0.00842986465 
  weight_percent  99.206`_0.093 
  scale @  3.94380415e-006`_8.29e-009 
  space_group Pbca 
  Phase_LAC_1_on_cm( 78.46976`_0.00056) 
  Phase_Density_g_on_cm3( 4.96171`_0.00004) 
 
prm lp0_70 = c_lp0 + m_lp0*t_70; 
prm a0_70 = lp0_70 / (2^0.5); 
prm e_11_70 = If(t_crit >= t_70 , f_e11*(t_crit - t_70)^c_e11,0); 
prm a_70 = ((e_11_70+1)*a0_70); 
prm b0_70 = lp0_70*(2^0.5); 
prm e_22_70 = If(t_crit >= t_70 , f_e22*(t_crit - t_70)^c_e22,0); 
prm b_70 = ((e_22_70+1)*b0_70); 
prm c0_70 = lp0_70*2; 
prm e_70_70 = If(t_crit >= t_70 , f_e33*(t_crit - t_70)^c_e33,0); 
prm c_70 = ((e_70_70+1)*c0_70); 
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  a=a_70; 
  b=b_70; 
  c=c_70; 
 
'mode definitions 
        prm  a1_70  = If(t_crit >= t_70 , f_a1*(t_crit - t_70)^c_a1,0); 
        prm  a2_70  = If(t_crit >= t_70 , f_a2*(t_crit - t_70)^c_a2,0); 
        prm  a3_70  = If(t_crit >= t_70 , f_a3*(t_crit - t_70)^c_a3,0); 
        prm  a4_70  = If(t_crit >= t_70 , f_a4*(t_crit - t_70)^c_a4,0); 
        prm  a5_70  = If(t_crit >= t_70 , f_a5*(t_crit - t_70)^c_a5,0); 
        prm  a6_70  = If(t_crit >= t_70 , f_a6*(t_crit - t_70)^c_a6,0); 
        prm  a7_70  = If(t_crit >= t_70 , f_a7*(t_crit - t_70)^c_a7,0); 
        prm  a8_70  = If(t_crit >= t_70 , f_a8*(t_crit - t_70)^c_a8,0); 
        prm  a9_70  = If(t_crit >= t_70 , f_a9*(t_crit - t_70)^c_a9,0); 
   prm  a10_70  = If(t_crit >= t_70 , f_a10*(t_crit - t_70)^c_a10,0); 
        prm  a11_70  = If(t_crit >= t_70 , f_a11*(t_crit - t_70)^c_a11,0); 
        prm  a12_70  = If(t_crit >= t_70 , f_a12*(t_crit - t_70)^c_a12,0); 
        prm  a13_70  = If(t_crit >= t_70 , f_a13*(t_crit - t_70)^c_a13,0); 
        prm  a14_70  = If(t_crit >= t_70 , f_a14*(t_crit - t_70)^c_a14,0); 
        prm  a15_70  = If(t_crit >= t_70 , f_a15*(t_crit - t_70)^c_a15,0); 
        prm  a16_70  = If(t_crit >= t_70 , f_a16*(t_crit - t_70)^c_a16,0); 
        prm  a17_70  = If(t_crit >= t_70 , f_a17*(t_crit - t_70)^c_a17,0); 
        prm  a18_70  = If(t_crit >= t_70 , f_a18*(t_crit - t_70)^c_a18,0); 
        prm  a19_70  = If(t_crit >= t_70 , f_a19*(t_crit - t_70)^c_a19,0); 
   prm  a20_70  = If(t_crit >= t_70 , f_a20*(t_crit - t_70)^c_a20,0); 
        prm  a21_70  = If(t_crit >= t_70 , f_a21*(t_crit - t_70)^c_a21,0); 
        prm  a22_70  = If(t_crit >= t_70 , f_a22*(t_crit - t_70)^c_a22,0); 
        prm  a23_70  = If(t_crit >= t_70 , f_a23*(t_crit - t_70)^c_a23,0); 
        prm  a24_70  = If(t_crit >= t_70 , f_a24*(t_crit - t_70)^c_a24,0); 
 
'mode-amplitude to delta-coord 
 prm  Cs1_dx_70 = +  0.06089*a5_70;:  0.00000 
 prm  Cs1_dy_70 = -  0.01165*a2_70 +  0.02813*a3_70;: -0.00080`_0.00002 
 prm  Cs1_dz_70 = -  0.01522*a1_70 -  0.01522*a6_70;: -0.00000 
 prm  Cs2_dx_70 = -  0.06089*a4_70;: -0.02837`_0.00013 
 prm  Cs2_dy_70 = +  0.02813*a2_70 +  0.01165*a3_70;:  0.00193`_0.00004 
 prm  Cs2_dz_70 = -  0.01522*a1_70 +  0.01522*a6_70;:  0.00000 
 prm  Fe1_dx_70 = -  0.06089*a11_70;: -0.00000 
 prm  Fe1_dy_70 = +  0.01165*a8_70 +  0.02813*a9_70;:  0.00420`_0.00008 
 prm  Fe1_dz_70 = -  0.01522*a7_70 +  0.01522*a12_70;:  0.00000 
 prm  Fe2_dx_70 = -  0.06089*a10_70;: -0.01926`_0.00011 
 prm  Fe2_dy_70 = +  0.02813*a8_70 -  0.01165*a9_70;: -0.00174`_0.00003 
 prm  Fe2_dz_70 = -  0.01522*a7_70 -  0.01522*a12_70;: -0.00000 
 prm  O1_dx_70  = +  0.04306*a17_70 +  0.02486*a19_70 +  0.03515*a21_70 +  
0.03189*a22_70;:  0.03581`_0.00035 
 prm  O1_dy_70  = +  0.01758*a13_70 +  0.00725*a14_70 +  0.01209*a15_70 -  
0.01758*a23_70 +  0.01243*a24_70;:  0.01235`_0.00019 
 prm  O1_dz_70  = -  0.00879*a13_70 +  0.00725*a14_70 +  0.01209*a15_70 +  
0.00879*a23_70 +  0.01243*a24_70;:  0.01235`_0.00019 
 prm  O2_dx_70  = +  0.04306*a17_70 -  0.02486*a19_70 -  0.03515*a21_70 -  
0.03189*a22_70;: -0.04269`_0.00035 
 prm  O2_dy_70  = -  0.01758*a13_70 -  0.00725*a14_70 -  0.01209*a15_70 -  
0.01758*a23_70 +  0.01243*a24_70;: -0.01235`_0.00019 
 prm  O2_dz_70  = +  0.00879*a13_70 -  0.00725*a14_70 -  0.01209*a15_70 +  
0.00879*a23_70 +  0.01243*a24_70;: -0.01235`_0.00019 
 prm  O3_dx_70  = -  0.04972*a16_70 +  0.03515*a18_70;: -0.03687`_0.00034 
 prm  O3_dy_70  = -  0.01243*a19_70 +  0.00879*a21_70 +  0.01907*a22_70;: -
0.01962`_0.00011 
 prm  O3_dz_70  = -  0.01243*a16_70 -  0.01758*a18_70;:  0.00803`_0.00013 
 prm  O4_dx_70  = -  0.02486*a19_70 -  0.04972*a20_70 +  0.01758*a21_70 +  
0.00854*a22_70;: -0.03925`_0.00023 
 prm  O4_dy_70  = +  0.02474*a14_70 +  0.00708*a15_70;:  0.02041`_0.00034 
 prm  O4_dz_70  = -  0.01243*a19_70 +  0.01243*a20_70 +  0.00879*a21_70 +  
0.00427*a22_70;: -0.01962`_0.00011 
 
'distorted coordinates 
        prm  Cs1_x_70 = 3/4 + Cs1_dx_70;:  0.75000 
        prm  Cs1_y_70 = 0 + Cs1_dy_70;: -0.00080`_0.00002 
        prm  Cs1_z_70 =    0.06250 + Cs1_dz_70;:  0.06250 
        prm  Cs2_x_70 = 1/4 + Cs2_dx_70;:  0.22163`_0.00013 
        prm  Cs2_y_70 = 1/4 + Cs2_dy_70;:  0.25193`_0.00004 
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        prm  Cs2_z_70 =    0.31250 + Cs2_dz_70;:  0.31250 
        prm  Fe1_x_70 = 1/4 + Fe1_dx_70;:  0.25000 
        prm  Fe1_y_70 = 0 + Fe1_dy_70;:  0.00420`_0.00008 
        prm  Fe1_z_70 =    0.18750 + Fe1_dz_70;:  0.18750 
        prm  Fe2_x_70 = 3/4 + Fe2_dx_70;:  0.73074`_0.00011 
        prm  Fe2_y_70 = 1/4 + Fe2_dy_70;:  0.24826`_0.00003 
        prm  Fe2_z_70 =    0.43750 + Fe2_dz_70;:  0.43750 
        prm  O1_x_70  = 1/4 + O1_dx_70;:  0.28581`_0.00035 
        prm  O1_y_70  = 1/8 + O1_dy_70;:  0.13735`_0.00019 
        prm  O1_z_70  = 1/8 + O1_dz_70;:  0.13735`_0.00019 
        prm  O2_x_70  = 1/4 + O2_dx_70;:  0.20731`_0.00035 
        prm  O2_y_70  = 1/8 + O2_dy_70;:  0.11265`_0.00019 
        prm  O2_z_70  = 5/8 + O2_dz_70;:  0.61265`_0.00019 
        prm  O3_x_70  = 0 + O3_dx_70;: -0.03687`_0.00034 
        prm  O3_y_70  = 1/4 + O3_dy_70;:  0.23038`_0.00011 
        prm  O3_z_70  = 0 + O3_dz_70;:  0.00803`_0.00013 
        prm  O4_x_70  = 1 + O4_dx_70;:  0.96075`_0.00023 
        prm  O4_y_70  = 0 + O4_dy_70;:  0.02041`_0.00034 
        prm  O4_z_70  = 1/4 + O4_dz_70;:  0.23038`_0.00011 
 
                site Cs1 x = Cs1_x_70; y = Cs1_y_70; z = Cs1_z_70; occ Cs 1 beq @  
2.2814`_0.0642 
                site Cs2 x = Cs2_x_70; y = Cs2_y_70; z = Cs2_z_70; occ Cs 1 beq @  
2.2764`_0.0693 
                site Fe1 x = Fe1_x_70; y = Fe1_y_70; z = Fe1_z_70; occ Fe 1 beq @  
0.8097`_0.1138 
                site Fe2 x = Fe2_x_70; y = Fe2_y_70; z = Fe2_z_70; occ Fe 1 beq @  
1.1939`_0.1268 
                site O1  x = O1_x_70;  y = O1_y_70;  z = O1_z_70;  occ O  1 beq 1.0 
                site O2  x = O2_x_70;  y = O2_y_70;  z = O2_z_70;  occ O  1 beq 1.0 
                site O3  x = O3_x_70;  y = O3_y_70;  z = O3_z_70;  occ O  1 beq 1.0 
                site O4  x = O4_x_70;  y = O4_y_70;  z = O4_z_70;  occ O  1 beq 1.0 
 
 str  
  CS_L( , 820.38984_26.94758) 
  Strain_L( , 0.08747_0.00104) 
  r_bragg  100 
  phase_name "CsFeO2_HT" 
  cell_mass  3532.004  
  cell_volume  1179.21251`_0.360889842 
  weight_percent  0.794`_0.093 
  scale @  3.16261103e-008`_3.72e-009_LIMIT_MIN_1e-015 
  space_group Pbca 
  Phase_LAC_1_on_cm( 78.65924`_0.02407) 
  Phase_Density_g_on_cm3( 4.97369`_0.00152) 
  a  @  5.87288`_0.00082 
  b  @  11.97029`_0.00182 
  c  @  16.77398`_0.00379  
 
         site Cs1 x = 0.75000;   y = 0;      z =0.06250;  occ Cs 1 beq 1  
         site Cs2 x = 1/4;    y =1/4;      z = 0.31250; occ Cs 1 beq 1  
         site Fe1 x = 1/4;    y = 0;      z = 0.18750; occ Fe 1 beq 1 
         site Fe2 x = 3/4;    y = 1/4;      z = 0.43750; occ Fe 1 beq 1 
         site O1  x = 1/4;       y = 1/8;       z = 1/8;     occ O  1 beq 1.0 
         site O2  x = 1/4;        y = 1/8;       z = 5/8;     occ O  1 beq 1.0 
         site O3  x = 0;          y = 1/4;       z = 0;       occ O  1 beq 1.0 
         site O4  x = 1;          y = 0;       z = 1/4;     occ O  1 beq 1.0 
 
xo_Is  
  xo  6.79089064 
  CS_L( ,0.56505) 
  I   68.0074266 
  peak_type fp 
 xo_Is  
  xo 23.4836519 
  CS_L( ,0.98337) 
  I   26.3336841 
  peak_type fp 
xdd "71.xye" 
… 
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